

ПРОИЗВОДСТВО ОБОРУДОВАНИЯ РАЗРАБОТКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ СИСТЕМНАЯ ИНТЕГРАЦИЯ В ТЕЛЕРАДИОВЕЩАНИИ

Паспорт, краткое техническое описание и инструкция по эксплуатации

TP-801

AoIP интерфейс Синапс

Оглавление

1 Краткое техническое описание	
1.1 Назначение	
1.2 Основные технические характеристики	
1.3 Форматы и параметры интерфейсов Синапс	
1.4 Форматы и параметры GPI, GPO	
1.5 Комплект поставки	
2 Устройство и работа	
2.1 Описание работы устройства	
2.2 Конструкция	
2.3 Цоколёвка	
3 Эксплуатация	
3.1 Климатические условия	
3.2 Монтаж	
3.3 Подготовка к работе	
3.4 Указания мер безопасности	
3.5 Транспортировка и хранение	
3.6 Реализация и утилизация	
4 Маркировка и выполняемые стандарты	
5 Гарантийные обязательства	
Свидетельство о приемке	
Адрес изготовителя	11
Список рисунков	
Рисунок 2.1 – ТР-801. Схема структурная	4
Рисунок 2.2 – Передняя панель Блока	5
Рисунок 2.3 – Задняя панель Блока	
Рисунок 2.4 – Принципиальные схемы GPI и GPO	6
Рисунок 2.5 – Цоколевка разъемов XLR3	6
Рису́нок 3.1 - Установка двух Блоков в стойку RACK 19"	7
Список таблиц	
Таблица 1.1 – Основные технические характеристики	3
Таблица 1.2 – Форматы и параметры интерфейсов Синапс	
Таблица 1.3 – Форматы и параметры интерфейсов GPI, GPO	
Таблица 1.4 – Комплект поставки	
Таблица 2.1 – Цоколёвка разъёмов DB-9 «GPI 1-4» и «GPO 1-4»	6
Таблица 2.2 – Цоколёвка разъёмов DB9 для блоков с с/н до 073	

1 Краткое техническое описание

Настоящее техническое описание и инструкция по эксплуатации предназначены для технического персонала, работающего с блоком AoIP интерфейса Синапс TP-801 (далее по тексту - «Блок»).

1.1 Назначение

Блок предназначен для работы с ПО «Синапс Сервер» и осуществляет прием и передачу аналоговых звуковых сигналов через систему Синапс.

АоIP-интерфейс может использоваться совместно с другими устройствами комплекса Синапс, например, для подключения белтпаков, акустических мониторов и прочего оборудования.

1.2 Основные технические характеристики

Таблица 1.1 – Основные технические характеристики

Параметр	Значение
Блок питания SGA12E12-P1J	Вход 220 В, 50 Гц
(или Mean Well GS15E-3P1J)	Выход +12В, 15Вт
Потребляемая мощность (не более)	15 Вт
Габаритные размеры и вес	218х175х44 мм, 0.9 кг
(без уголков для крепления в стойку и ножек)	210X175X44 MM, 0.9 KI
Габаритные размеры и вес в упаковке	395х255х94 мм, 1.5 кг

1.3 Форматы и параметры интерфейсов Синапс

Таблица 1.2 – Форматы и параметры интерфейсов Синапс

Параметр	Значение
Сетевые протоколы	TCP, UDP, RTP
Количество интерфейсов Синапс	2 (основной и резервный)
Звуковых каналов Синапс, моно вход/выход	1
Скорость вх. и вых. данных, не более	0.55 Мбит/с
Формат передачи звука	РСМ, 16 бит/16 кГц

1.4 Форматы и параметры GPI, GPO

Таблица 1.3 – Форматы и параметры интерфейсов GPI, GPO

Параметры GPI разъём DB-9F «GPI 1-4»			
Тип GPI	GPI Транзисторный вход с внутренним источником питания		
Питание	Внутренний источник 3,3 В. Допускается подключение устройств с собственным питанием GPO до 5В		
Срабатывание	При замыкании на землю		
Параметры GPO разъём DB-9F «GPO 1-4»			
Тип GPO		Оптопара,	
		гальваническая развязка	
Рекомендуемый ток нагрузки 10 мА			
Максимальный ток нагрузки ≤ 50 мА			
Максимальное напряжение между контактами		≤ 70 B	
Соблюдение полярности		Требуется	

1.5 Комплект поставки

Таблица 1.4 – Комплект поставки

п/п	Наименование и тип		
1	Блок ТР-801 в упаковке	1	
2	Уголок для установки в стойку 19", короткий	1	
3	Уголок для установки в стойку 19", длинный	1	
4	Винты креплений уголков к блоку. DIN965 M3x8	4	
5	Блок питания SGA12E12-P1J +12B, 15Вт		
5	(или Mean Well GS15E-3P1J)	I	
6	Комплект заземления (кабель и крепёж на Блок)	1	
7	Техническое описание и краткая инструкция по эксплуатации	1	

2 Устройство и работа

2.1 Описание работы устройства

Прибор использует протокол TCP для установки соединения с сервером Синапс и собственный RTP протокол для передачи звука. Структурная схема Блока представлена на рисунке 2.1.

Входной аналоговый сигнал через аналоговый стерео (моно) вход поступает на аналогово-цифровой кодек, где преобразуются в цифровую форму. Далее цифровой сигнал поступает через ЦПУ на коммутатор.

Пришедший с коммутатора цифровой сигнал поступает на кодек, где преобразуется в аналоговую форму. С выхода кодека аналоговый сигнал через аналоговый моновыход поступает на входы потребителя.

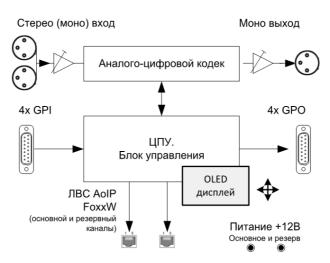


Рисунок 2.1 – ТР-801. Схема структурная

2.2 Конструкция

Внешний вид Блока показан на рисунках 2.2 и 2.3. На передней панели Блока расположены OLED дисплей и джойстик.

Рисунок 2.2 – Передняя панель Блока

Рисунок 2.3 – Задняя панель Блока

На задней панели Блока слева направо расположены:

- 2 разъёма XLR-F* «Вход Левый+Правый» входы аналогового стерео- или моносигнала;
- 2 разъёма XLR-М* «Выход 1, 2» выходы аналогового моносигнала;
- * у блоков **с серийными номерами (с/н) до 073** для приема и передачи аналоговых сигналов вместо разъёмов XLR используются **разъёмы DB9**.
 - разъём DB-9F «GPI 1-4» для приёма сигналов управления;
 - разъём DB-9M «GPO 1-4» для передачи сигналов управления;
 - разъём "miniUSB" с кнопкой «!» слева для обновления прошивки;
 - 2 разъема miniXLR «Питание1», «Питание 2» для подключения к основному и резервному адаптерам питания.
 - 2 разъёма RJ-45 «LAN1», «LAN2» для подключения к основному и резервному коммутаторам;

2.3 Цоколёвка

Цоколевка разъёмов DB-9 GPI и GPO приведена в таблице 2.2.

Разъём GPI работает на замыкание. Управляющее устройство должно иметь выход типа «сухой контакт». Разъём GPO по выходу имеет оптореле (PC817).

Таблица 2.1 – Цоколёвка разъёмов DB-9 «GPI 1-4» и «GPO 1-4»

№ конт.	GPI 1-4» (DB-9F)	№ конт.	«GPO 1-4» (DB-9M)
1	GPI1	1	GPO1- (эмиттер)
2	GPI2	2	GPO2- (эмиттер)
3	GPI3	3	GPO3- (эмиттер)
4	GPI4	4	GPO4- (эмиттер)
6	COMMON	6	GPO1+ (коллектор)
7	COMMON	7	GPO2+ (коллектор)
8	COMMON	8	GPO3+ (коллектор)
9	COMMON	9	GPO4+ (коллектор)

Принципиальные схемы GPI и GPO представлены на рисунке 2.4.

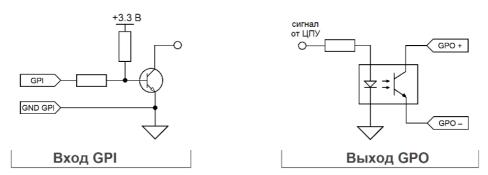


Рисунок 2.4 – Принципиальные схемы GPI и GPO

Цоколёвка разъема mini XLR блока питания 12B и разъёмов XLR3 для передачи звука приведены на рисунках 2.5-2.6.

Рисунок 2.5 – Цоколевка разъемов XLR3

Рисунок 2.6 – Цоколевка разъема mini XLR3

Цоколёвка для входных и выходных разъёмов DB-9 для блоков с серийными номерами (с/н) до 073 приведена в таблице 2.3.

Таблица 2.2 – Цоколёвка разъёмов DB9 для блоков с с/н до 073

№ конт.	«Вход» (DB-9F)	№ конт.	«Выход» (DB-9M)
1	LEFT+ или MONO+	1	MONO+
2	LEFT- или MONO-	2	MONO-
4	RIGHT+	4	_
5	RIGHT-	5	_
6,9	GND	6,9	GND

3 Эксплуатация

3.1 Климатические условия

Оборудование предназначено для эксплуатации в помещениях в условиях:

рабочая температура: от 5°C до 40°C

относительная влажность: от 20% до 80%, без конденсации

Аппаратура сохраняет заявленные характеристики при понижении атмосферного давления до 60 кПа (450 мм.рт.ст.).

3.2 Монтаж

Блок может устанавливаться как на столе, так и в стойке RACK 19" с помощью уголков из комплекта поставки. Уголки крепятся к блоку двумя винтами.

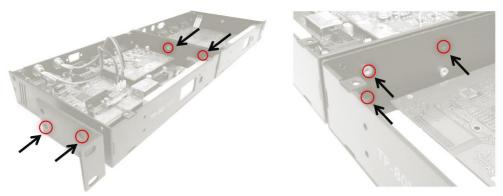


Рисунок 3.1 - Установка двух Блоков в стойку RACK 19"

Возможно соединение двух блоков друг с другом для более компактной установки в стойку. Для этого нужно снять верхние крышки и использовать крепёжные отверстия для уголков (Рисунок 3.1).

3.3 Подготовка к работе

Перед началом использования Блока необходимо соединить Блок и коммутатор патч-кордом; затем подать питание на Блок с помощью блока

питания, входящего в комплект поставки.

3.4 Указания мер безопасности

Блок необходимо оберегать от ударов, попадания в него пыли и влаги.

Монтаж и эксплуатация изделия должны производиться в соответствии с «Правилами устройства электроустановок».

В процессе эксплуатации необходимо не реже одного раза в два года, а также после аварийных состояний проводить осмотр и подтяжку контактных соединений; очистку от загрязнений. Профилактическую проверку изделия необходимо проводить только при снятом напряжении.

При обнаружении неисправности изделия необходимо принять меры к вызову квалифицированного обслуживающего персонала или отправить изделие производителю для диагностики и ремонта.

Срок службы 10 лет со дня передачи изделия потребителю.

3.5 Транспортировка и хранение

Транспортировка изделия в упаковке предприятия-изготовителя может осуществляться в закрытом транспорте любого типа.

Транспортное положение не оговаривается, крепление на транспортных средствах должно исключать возможность перемещения изделий при транспортировке. Блоки в упаковке необходимо оберегать от установки на них других грузов массой более 5 кг.

- температура окружающей среды от минус 40° С до плюс 50° С;
- относительная влажность воздуха до 95% при температуре плюс 30° С;
- атмосферное давление от 84,0 до 107,0 кПа (от 630 до 800 мм рт. ст.).

Хранение изделий допускается в отапливаемом вентилируемом помещении при температуре окружающего воздуха от +5 до +35 С° и относительной влажности до 85%. Срок хранения не должен превышать гарантийного срока эксплуатации изделия.

3.6 Реализация и утилизация

Реализация оборудования осуществляется путем заключения договоров на поставку. Утилизация оборудования осуществляется в соответствии с требованиями и нормами России и стран — участников Таможенного союза. При утилизации оборудования в виде промышленных отходов вредного влияния на окружающую среду не оказывается.

4 Маркировка и выполняемые стандарты

Маркировка Блока производится в соответствии с требованиями ГОСТ Р 51321.1-2007 и располагается на задней панели устройства.

Блок разработан и изготовлен в соответствии с:

• ГОСТ 12.2.007.0-75 Система стандартов безопасности труда. Изделия

электротехнические. Общие требования безопасности

- **FOCT IEC 62311-2013** Оценка электронного и электрического оборудования в отношении ограничений воздействия на человека электромагнитных полей;
- ГОСТ 30804.6.1-2013 (IEC 61000-6-1:2005) Устойчивость к электромагнитным помехам технических средств, применяемых в жилых, коммерческих зонах и производственных зонах с малым энергопотреблением;
- **ГОСТ 30804.6.3-2013(IEC 61000-6-3:2006)** Электромагнитные помехи от технических средств, применяемых в жилых, коммерческих зонах и производственных зонах с малым энергопотреблением.

5 Гарантийные обязательства

Предприятие-изготовитель гарантирует работоспособность Блока при соблюдении пользователями условий эксплуатации, транспортировки и хранения. В случае нарушения условий и правил эксплуатации Блока в течение гарантийного срока потребитель лишается права на бесплатный гарантийный ремонт или замену.

Гарантийный срок эксплуатации – 12 месяцев со дня передачи изделия потребителю.

Основания для снятия оборудования с гарантийного обслуживания:

- 1. Наличие механических повреждений (сколов, вмятин и т.п.) на корпусе или иной части оборудования, свидетельствующих об ударе;
- 2. Наличие следов попадания внутрь оборудования посторонних веществ, жидкостей, предметов, насекомых и грызунов;
- 3. Наличие признаков самостоятельного ремонта;
- 4. Нарушение пломб, наклеек; замена деталей и комплектующих;
- 5. Наличие повреждений, являющихся следствием нарушения правил эксплуатации: неправильная установка оборудования, подача повышенного или нестабильного питающего напряжения, горячее подключение, пренебрежение правилами электростатической безопасности и т.п.;
- 6. Наличие повреждений, вызванных климатическими особенностями, стихийными бедствиями, пожарами и аналогичными причинами.

Свидетельство о приемке

Штамп ОТК

Адрес изготовителя

Россия, 197101 Санкт-Петербург, ул. Кронверкская, д. 23 тел.: +7(812)490-77-99 E-mail: <u>info@tract.ru</u>

Обновленные версии технических описаний и декларации соответствия можно найти на сайте производителя https://tract.ru/pdf или по QR-коду

